Cargando…
Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer
BACKGROUND: Immune checkpoint inhibitors (ICI) improve clinical outcomes in triple-negative breast cancer (TNBC) patients. However, a subset of patients does not respond to treatment. Biomarkers that show ICI predictive potential in other solid tumors, such as levels of PD-L1 and the tumor mutationa...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333210/ https://www.ncbi.nlm.nih.gov/pubmed/37430006 http://dx.doi.org/10.1038/s43856-023-00311-y |
_version_ | 1785070604688293888 |
---|---|
author | Ensenyat-Mendez, Miquel Orozco, Javier I. J. Llinàs-Arias, Pere Íñiguez-Muñoz, Sandra Baker, Jennifer L. Salomon, Matthew P. Martí, Mercè DiNome, Maggie L. Cortés, Javier Marzese, Diego M. |
author_facet | Ensenyat-Mendez, Miquel Orozco, Javier I. J. Llinàs-Arias, Pere Íñiguez-Muñoz, Sandra Baker, Jennifer L. Salomon, Matthew P. Martí, Mercè DiNome, Maggie L. Cortés, Javier Marzese, Diego M. |
author_sort | Ensenyat-Mendez, Miquel |
collection | PubMed |
description | BACKGROUND: Immune checkpoint inhibitors (ICI) improve clinical outcomes in triple-negative breast cancer (TNBC) patients. However, a subset of patients does not respond to treatment. Biomarkers that show ICI predictive potential in other solid tumors, such as levels of PD-L1 and the tumor mutational burden, among others, show a modest predictive performance in patients with TNBC. METHODS: We built machine learning models based on pre-ICI treatment gene expression profiles to construct gene expression classifiers to identify primary TNBC ICI-responder patients. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus chemotherapy, including TNBC tumors, HR+/HER2− breast tumors, and other solid non-breast tumors. RESULTS: The 37-gene TNBC ICI predictive (TNBC-ICI) classifier performs well in predicting pathological complete response (pCR) to ICI plus chemotherapy on an independent TNBC validation cohort (AUC = 0.86). The TNBC-ICI classifier shows better performance than other molecular signatures, including PD-1 (PDCD1) and PD-L1 (CD274) gene expression (AUC = 0.67). Integrating TNBC-ICI with molecular signatures does not improve the efficiency of the classifier (AUC = 0.75). TNBC-ICI displays a modest accuracy in predicting ICI response in two different cohorts of patients with HR + /HER2- breast cancer (AUC = 0.72 to pembrolizumab and AUC = 0.75 to durvalumab). Evaluation of six cohorts of patients with non-breast solid tumors treated with ICI plus chemotherapy shows overall poor performance (median AUC = 0.67). CONCLUSION: TNBC-ICI predicts pCR to ICI plus chemotherapy in patients with primary TNBC. The study provides a guide to implementing the TNBC-ICI classifier in clinical studies. Further validations will consolidate a novel predictive panel to improve the treatment decision-making for patients with TNBC. |
format | Online Article Text |
id | pubmed-10333210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103332102023-07-12 Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer Ensenyat-Mendez, Miquel Orozco, Javier I. J. Llinàs-Arias, Pere Íñiguez-Muñoz, Sandra Baker, Jennifer L. Salomon, Matthew P. Martí, Mercè DiNome, Maggie L. Cortés, Javier Marzese, Diego M. Commun Med (Lond) Article BACKGROUND: Immune checkpoint inhibitors (ICI) improve clinical outcomes in triple-negative breast cancer (TNBC) patients. However, a subset of patients does not respond to treatment. Biomarkers that show ICI predictive potential in other solid tumors, such as levels of PD-L1 and the tumor mutational burden, among others, show a modest predictive performance in patients with TNBC. METHODS: We built machine learning models based on pre-ICI treatment gene expression profiles to construct gene expression classifiers to identify primary TNBC ICI-responder patients. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus chemotherapy, including TNBC tumors, HR+/HER2− breast tumors, and other solid non-breast tumors. RESULTS: The 37-gene TNBC ICI predictive (TNBC-ICI) classifier performs well in predicting pathological complete response (pCR) to ICI plus chemotherapy on an independent TNBC validation cohort (AUC = 0.86). The TNBC-ICI classifier shows better performance than other molecular signatures, including PD-1 (PDCD1) and PD-L1 (CD274) gene expression (AUC = 0.67). Integrating TNBC-ICI with molecular signatures does not improve the efficiency of the classifier (AUC = 0.75). TNBC-ICI displays a modest accuracy in predicting ICI response in two different cohorts of patients with HR + /HER2- breast cancer (AUC = 0.72 to pembrolizumab and AUC = 0.75 to durvalumab). Evaluation of six cohorts of patients with non-breast solid tumors treated with ICI plus chemotherapy shows overall poor performance (median AUC = 0.67). CONCLUSION: TNBC-ICI predicts pCR to ICI plus chemotherapy in patients with primary TNBC. The study provides a guide to implementing the TNBC-ICI classifier in clinical studies. Further validations will consolidate a novel predictive panel to improve the treatment decision-making for patients with TNBC. Nature Publishing Group UK 2023-07-10 /pmc/articles/PMC10333210/ /pubmed/37430006 http://dx.doi.org/10.1038/s43856-023-00311-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ensenyat-Mendez, Miquel Orozco, Javier I. J. Llinàs-Arias, Pere Íñiguez-Muñoz, Sandra Baker, Jennifer L. Salomon, Matthew P. Martí, Mercè DiNome, Maggie L. Cortés, Javier Marzese, Diego M. Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer |
title | Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer |
title_full | Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer |
title_fullStr | Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer |
title_full_unstemmed | Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer |
title_short | Construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer |
title_sort | construction and validation of a gene expression classifier to predict immunotherapy response in primary triple-negative breast cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333210/ https://www.ncbi.nlm.nih.gov/pubmed/37430006 http://dx.doi.org/10.1038/s43856-023-00311-y |
work_keys_str_mv | AT ensenyatmendezmiquel constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT orozcojavierij constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT llinasariaspere constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT iniguezmunozsandra constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT bakerjenniferl constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT salomonmatthewp constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT martimerce constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT dinomemaggiel constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT cortesjavier constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer AT marzesediegom constructionandvalidationofageneexpressionclassifiertopredictimmunotherapyresponseinprimarytriplenegativebreastcancer |