Cargando…
nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes
Feature selection to identify spatially variable genes or other biologically informative genes is a key step during analyses of spatially-resolved transcriptomics data. Here, we propose nnSVG, a scalable approach to identify spatially variable genes based on nearest-neighbor Gaussian processes. Our...
Autores principales: | Weber, Lukas M., Saha, Arkajyoti, Datta, Abhirup, Hansen, Kasper D., Hicks, Stephanie C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333391/ https://www.ncbi.nlm.nih.gov/pubmed/37429865 http://dx.doi.org/10.1038/s41467-023-39748-z |
Ejemplares similares
-
Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest Neighbor Gaussian Processes
por: Saha, Arkajyoti, et al.
Publicado: (2022) -
Compressed kNN: K-Nearest Neighbors with Data Compression
por: Salvador–Meneses, Jaime, et al.
Publicado: (2019) -
A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications
por: Ver Hoef, Jay M., et al.
Publicado: (2013) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Dimensionality reduction with unsupervised nearest neighbors
por: Kramer, Oliver
Publicado: (2013)