Cargando…

Green tea EGCG inhibits naïve CD4(+) T cell division and progression in mice: An integration of network pharmacology, molecular docking and experimental validation

Dietary green tea epigallocatechin-3-gallate (EGCG) could attenuate experimental autoimmune encephalomyelitis via the modification of the balance of CD4(+) T helper (Th) cells. Moreover, EGCG administration in vitro has a direct impact on the regulatory cytokines and differentiation of CD4(+) T cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Xinli, Liu, Zejin, Wang, Junpeng, Wu, Dayong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333431/
https://www.ncbi.nlm.nih.gov/pubmed/37441168
http://dx.doi.org/10.1016/j.crfs.2023.100537
Descripción
Sumario:Dietary green tea epigallocatechin-3-gallate (EGCG) could attenuate experimental autoimmune encephalomyelitis via the modification of the balance of CD4(+) T helper (Th) cells. Moreover, EGCG administration in vitro has a direct impact on the regulatory cytokines and differentiation of CD4(+) T cells. Here, we aim to determine whether EGCG directly affects the cell division and progression in naive CD4(+) T cells. We first investigate the effect of EGCG on naïve CD4(+) T cell division and progression in vitro. An integrated analysis of network pharmacology and molecular docking was utilized to further identify the targets of EGCG for T cell-mediated autoimmune diseases and multiple sclerosis (MS). EGCG treatment prevented naïve CD4(+) T cells from progressing through the cell cycle when stimulated with anti-CD3/CD28 antibodies. This was achieved by increasing the proportion of cells arrested in the G0/G1 phase by 8.6% and reducing DNA synthesis activity by 51% in the S phase. Furthermore, EGCG treatment inhibited the expression of cyclins (cyclin D1, cyclin D3, cyclin A, and cyclin B1) and CDKs (CDK2 and CDK6) during naïve CD4(+) T cell activation in response to anti-CD3/CD28 stimulation. However, EGCG inhibited the decrease of P27(Kip1) (CDKN1B) during naïve CD4(+) T cell activation, whereas it inhibited the increase of P21(Cip1) (CDKN1A) expression 48 h after mitogenic stimulation. The molecular docking analysis confirmed that these proteins (CD4, CCND1, and CDKN1A) are the primary targets for EGCG, T cell-mediated autoimmune diseases, and MS. Finally, target enrichment analysis indicated that EGCG may affect the cell cycle, T cell receptor signaling pathway, Th cell differentiation, and NF-κB signaling pathway. These findings reveal a crucial role of EGCG in the division and progression of CD4(+) T cells, and underscore other potential targets of EGCG in T cell-mediated autoimmune diseases such as MS.