Cargando…
Data-driven categorization of postoperative delirium symptoms using unsupervised machine learning
BACKGROUND: Phenotyping analysis that includes time course is useful for understanding the mechanisms and clinical management of postoperative delirium. However, postoperative delirium has not been fully phenotyped. Hypothesis-free categorization of heterogeneous symptoms may be useful for understan...
Autores principales: | Sri-iesaranusorn, Panyawut, Sadahiro, Ryoichi, Murakami, Syo, Wada, Saho, Shimizu, Ken, Yoshida, Teruhiko, Aoki, Kazunori, Uezono, Yasuhito, Matsuoka, Hiromichi, Ikeda, Kazushi, Yoshimoto, Junichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333495/ https://www.ncbi.nlm.nih.gov/pubmed/37441147 http://dx.doi.org/10.3389/fpsyt.2023.1205605 |
Ejemplares similares
-
Prevention of delirium with agitation by yokukansan in older adults after cancer surgery
por: Sadahiro, Ryoichi, et al.
Publicado: (2022) -
Pilot Study of Lemborexant for Insomnia in Cancer Patients with Delirium
por: Terada, Tatsuto, et al.
Publicado: (2022) -
Parkinson’s disease severity clustering based on tapping activity on mobile device
por: Surangsrirat, Decho, et al.
Publicado: (2022) -
Classification of 41 Hand and Wrist Movements via Surface Electromyogram Using Deep Neural Network
por: Sri-iesaranusorn, Panyawut, et al.
Publicado: (2021) -
Yokukansan for perioperative psychiatric symptoms in cancer patients undergoing high invasive surgery. J-SUPPORT 1605 (ProD Study): study protocol for a randomized controlled trial
por: Wada, Saho, et al.
Publicado: (2019)