Cargando…
A scalable implementation of the recursive least-squares algorithm for training spiking neural networks
Training spiking recurrent neural networks on neuronal recordings or behavioral tasks has become a popular way to study computations performed by the nervous system. As the size and complexity of neural recordings increase, there is a need for efficient algorithms that can train models in a short pe...
Autores principales: | Arthur, Benjamin J., Kim, Christopher M., Chen, Susu, Preibisch, Stephan, Darshan, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333503/ https://www.ncbi.nlm.nih.gov/pubmed/37441157 http://dx.doi.org/10.3389/fninf.2023.1099510 |
Ejemplares similares
-
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
por: Zhang, Chunyuan, et al.
Publicado: (2016) -
Minibatch Recursive Least Squares Q-Learning
por: Zhang, Chunyuan, et al.
Publicado: (2021) -
Early Stopping Criterion for Recursive Least Squares Training of Behavioural Models
por: Loughman, Méabh, et al.
Publicado: (2022) -
Recursive least squares background prediction of univariate syndromic surveillance data
por: Najmi, Amir-Homayoon, et al.
Publicado: (2009) -
Recursive N-Way Partial Least Squares for Brain-Computer Interface
por: Eliseyev, Andrey, et al.
Publicado: (2013)