Cargando…

A difference in larval mosquito size allows a biocontrol agent to target the invasive species

As the global temperature rises in the coming decades, Aedes albopictus is expected to invade and establish in South East England, where Culex pipiens is currently the most common native mosquito species. Biocontrol measures that use local cyclopoid copepods against Ae. albopictus may be compromised...

Descripción completa

Detalles Bibliográficos
Autor principal: Russell, Marie C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333674/
https://www.ncbi.nlm.nih.gov/pubmed/37441096
http://dx.doi.org/10.1002/ece3.10294
_version_ 1785070714761510912
author Russell, Marie C
author_facet Russell, Marie C
author_sort Russell, Marie C
collection PubMed
description As the global temperature rises in the coming decades, Aedes albopictus is expected to invade and establish in South East England, where Culex pipiens is currently the most common native mosquito species. Biocontrol measures that use local cyclopoid copepods against Ae. albopictus may be compromised if the copepods prefer alternate Cx. pipiens prey. In this study, I assessed the predation efficiency of Megacyclops viridis copepods against Ae. albopictus larvae from France and larvae that hatched from egg rafts of Cx. pipiens collected in South East England. The experiments were conducted at 15 and 25°C, which are representative of present and future summer temperatures in South East England. Ae. albopictus larvae that survived the course of the experiment in the predator‐absent controls were significantly smaller than Cx. pipiens larvae that survived in the absence of predation. The background mortality of Cx. pipiens larvae increased with the 10‐degree increase in temperature, and the smaller size of surviving Cx. pipiens larvae at 25°C, relative to survivors at 15°C, suggests that larger Cx. pipiens larvae were more likely to die at the higher temperature setting. Across all experimental treatments, the ratio of copepod body length to mean prey length, based on larval lengths of survivors from the corresponding predator‐absent controls, was a significant predictor of the copepod's predation efficiency. Adding temperature setting to the predation efficiency model as a predictor did not improve model fit. Within the mixed prey treatments, the predation efficiency of M. viridis was 34.5 percentage points higher against Ae. albopictus prey than against Cx. pipiens prey. The higher predation efficiency that M. viridis exhibited against invasive Ae. albopictus prey, likely due to the smaller size of these larvae, supports the future use of M. viridis as a biocontrol agent in the United Kingdom.
format Online
Article
Text
id pubmed-10333674
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-103336742023-07-12 A difference in larval mosquito size allows a biocontrol agent to target the invasive species Russell, Marie C Ecol Evol Research Articles As the global temperature rises in the coming decades, Aedes albopictus is expected to invade and establish in South East England, where Culex pipiens is currently the most common native mosquito species. Biocontrol measures that use local cyclopoid copepods against Ae. albopictus may be compromised if the copepods prefer alternate Cx. pipiens prey. In this study, I assessed the predation efficiency of Megacyclops viridis copepods against Ae. albopictus larvae from France and larvae that hatched from egg rafts of Cx. pipiens collected in South East England. The experiments were conducted at 15 and 25°C, which are representative of present and future summer temperatures in South East England. Ae. albopictus larvae that survived the course of the experiment in the predator‐absent controls were significantly smaller than Cx. pipiens larvae that survived in the absence of predation. The background mortality of Cx. pipiens larvae increased with the 10‐degree increase in temperature, and the smaller size of surviving Cx. pipiens larvae at 25°C, relative to survivors at 15°C, suggests that larger Cx. pipiens larvae were more likely to die at the higher temperature setting. Across all experimental treatments, the ratio of copepod body length to mean prey length, based on larval lengths of survivors from the corresponding predator‐absent controls, was a significant predictor of the copepod's predation efficiency. Adding temperature setting to the predation efficiency model as a predictor did not improve model fit. Within the mixed prey treatments, the predation efficiency of M. viridis was 34.5 percentage points higher against Ae. albopictus prey than against Cx. pipiens prey. The higher predation efficiency that M. viridis exhibited against invasive Ae. albopictus prey, likely due to the smaller size of these larvae, supports the future use of M. viridis as a biocontrol agent in the United Kingdom. John Wiley and Sons Inc. 2023-07-10 /pmc/articles/PMC10333674/ /pubmed/37441096 http://dx.doi.org/10.1002/ece3.10294 Text en © 2023 The Author. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Russell, Marie C
A difference in larval mosquito size allows a biocontrol agent to target the invasive species
title A difference in larval mosquito size allows a biocontrol agent to target the invasive species
title_full A difference in larval mosquito size allows a biocontrol agent to target the invasive species
title_fullStr A difference in larval mosquito size allows a biocontrol agent to target the invasive species
title_full_unstemmed A difference in larval mosquito size allows a biocontrol agent to target the invasive species
title_short A difference in larval mosquito size allows a biocontrol agent to target the invasive species
title_sort difference in larval mosquito size allows a biocontrol agent to target the invasive species
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333674/
https://www.ncbi.nlm.nih.gov/pubmed/37441096
http://dx.doi.org/10.1002/ece3.10294
work_keys_str_mv AT russellmariec adifferenceinlarvalmosquitosizeallowsabiocontrolagenttotargettheinvasivespecies
AT russellmariec differenceinlarvalmosquitosizeallowsabiocontrolagenttotargettheinvasivespecies