Cargando…
Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One suc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333792/ https://www.ncbi.nlm.nih.gov/pubmed/37289493 http://dx.doi.org/10.1099/mic.0.001346 |
_version_ | 1785070742443917312 |
---|---|
author | Bisaro, Fabiana Shuman, Howard A. Feldman, Mario F. Gebhardt, Michael J. Pukatzki, Stefan |
author_facet | Bisaro, Fabiana Shuman, Howard A. Feldman, Mario F. Gebhardt, Michael J. Pukatzki, Stefan |
author_sort | Bisaro, Fabiana |
collection | PubMed |
description | Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One such competition strategy depends on small secreted peptides called microcins, which exert antimicrobial effects in a contact-independent manner. Here, we report that A. baumannii ATCC 17978 (AB17978) encodes the class II microcin 17 978 (Mcc17978) with antimicrobial activity against closely related Acinetobacter , and surprisingly, also Escherichia coli strains. We identified the genetic locus encoding the Mcc17978 system in AB17978. Using classical bacterial genetic approaches, we determined that the molecular receptor of Mcc17978 in E. coli is the iron-catecholate transporter Fiu, and in Acinetobacter is Fiu’s homolog, PiuA. In bacteria, the Ferric uptake regulator (Fur) positively regulates siderophore systems and microcin systems under iron-deprived environments. We found that the Mcc17978 system is upregulated under low-iron conditions commonly found in the host environment and identified a putative Fur binding site upstream of the mcc17978 gene. When we tested the antimicrobial activity of Mcc17978 under different levels of iron availability, we observed that low iron levels not only triggered transcriptional induction of the microcin, but also led to enhanced microcin activity. Taken together, our findings suggest that A. baumannii may utilize microcins to compete with other microbes for resources during infection. |
format | Online Article Text |
id | pubmed-10333792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Microbiology Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103337922023-07-12 Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition Bisaro, Fabiana Shuman, Howard A. Feldman, Mario F. Gebhardt, Michael J. Pukatzki, Stefan Microbiology (Reading) Microbial Virulence and Pathogenesis Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One such competition strategy depends on small secreted peptides called microcins, which exert antimicrobial effects in a contact-independent manner. Here, we report that A. baumannii ATCC 17978 (AB17978) encodes the class II microcin 17 978 (Mcc17978) with antimicrobial activity against closely related Acinetobacter , and surprisingly, also Escherichia coli strains. We identified the genetic locus encoding the Mcc17978 system in AB17978. Using classical bacterial genetic approaches, we determined that the molecular receptor of Mcc17978 in E. coli is the iron-catecholate transporter Fiu, and in Acinetobacter is Fiu’s homolog, PiuA. In bacteria, the Ferric uptake regulator (Fur) positively regulates siderophore systems and microcin systems under iron-deprived environments. We found that the Mcc17978 system is upregulated under low-iron conditions commonly found in the host environment and identified a putative Fur binding site upstream of the mcc17978 gene. When we tested the antimicrobial activity of Mcc17978 under different levels of iron availability, we observed that low iron levels not only triggered transcriptional induction of the microcin, but also led to enhanced microcin activity. Taken together, our findings suggest that A. baumannii may utilize microcins to compete with other microbes for resources during infection. Microbiology Society 2023-06-07 /pmc/articles/PMC10333792/ /pubmed/37289493 http://dx.doi.org/10.1099/mic.0.001346 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution. |
spellingShingle | Microbial Virulence and Pathogenesis Bisaro, Fabiana Shuman, Howard A. Feldman, Mario F. Gebhardt, Michael J. Pukatzki, Stefan Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition |
title |
Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition |
title_full |
Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition |
title_fullStr |
Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition |
title_full_unstemmed |
Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition |
title_short |
Acinetobacter baumannii ATCC 17978 encodes a microcin system with antimicrobial properties for contact-independent competition |
title_sort | acinetobacter baumannii atcc 17978 encodes a microcin system with antimicrobial properties for contact-independent competition |
topic | Microbial Virulence and Pathogenesis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333792/ https://www.ncbi.nlm.nih.gov/pubmed/37289493 http://dx.doi.org/10.1099/mic.0.001346 |
work_keys_str_mv | AT bisarofabiana acinetobacterbaumanniiatcc17978encodesamicrocinsystemwithantimicrobialpropertiesforcontactindependentcompetition AT shumanhowarda acinetobacterbaumanniiatcc17978encodesamicrocinsystemwithantimicrobialpropertiesforcontactindependentcompetition AT feldmanmariof acinetobacterbaumanniiatcc17978encodesamicrocinsystemwithantimicrobialpropertiesforcontactindependentcompetition AT gebhardtmichaelj acinetobacterbaumanniiatcc17978encodesamicrocinsystemwithantimicrobialpropertiesforcontactindependentcompetition AT pukatzkistefan acinetobacterbaumanniiatcc17978encodesamicrocinsystemwithantimicrobialpropertiesforcontactindependentcompetition |