Cargando…
Mapping single‐cell responses to population‐level dynamics during antibiotic treatment
Treatment of sensitive bacteria with beta‐lactam antibiotics often leads to two salient population‐level features: a transient increase in total population biomass before a subsequent decline, and a linear correlation between growth and killing rates. However, it remains unclear how these population...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333910/ http://dx.doi.org/10.15252/msb.202211475 |
_version_ | 1785070770338136064 |
---|---|
author | Kim, Kyeri Wang, Teng Ma, Helena R Şimşek, Emrah Li, Boyan Andreani, Virgile You, Lingchong |
author_facet | Kim, Kyeri Wang, Teng Ma, Helena R Şimşek, Emrah Li, Boyan Andreani, Virgile You, Lingchong |
author_sort | Kim, Kyeri |
collection | PubMed |
description | Treatment of sensitive bacteria with beta‐lactam antibiotics often leads to two salient population‐level features: a transient increase in total population biomass before a subsequent decline, and a linear correlation between growth and killing rates. However, it remains unclear how these population‐level responses emerge from collective single‐cell responses. During beta‐lactam treatment, it is well‐recognized that individual cells often exhibit varying degrees of filamentation before lysis. We show that the cumulative probability of cell lysis increases sigmoidally with the extent of filamentation and that this dependence is characterized by unique parameters that are specific to bacterial strain, antibiotic dose, and growth condition. Modeling demonstrates how the single‐cell lysis probabilities can give rise to population‐level biomass dynamics, which were experimentally validated. This mapping provides insights into how the population biomass time‐kill curve emerges from single cells and allows the representation of both single‐ and population‐level responses with universal parameters. |
format | Online Article Text |
id | pubmed-10333910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103339102023-07-12 Mapping single‐cell responses to population‐level dynamics during antibiotic treatment Kim, Kyeri Wang, Teng Ma, Helena R Şimşek, Emrah Li, Boyan Andreani, Virgile You, Lingchong Mol Syst Biol Articles Treatment of sensitive bacteria with beta‐lactam antibiotics often leads to two salient population‐level features: a transient increase in total population biomass before a subsequent decline, and a linear correlation between growth and killing rates. However, it remains unclear how these population‐level responses emerge from collective single‐cell responses. During beta‐lactam treatment, it is well‐recognized that individual cells often exhibit varying degrees of filamentation before lysis. We show that the cumulative probability of cell lysis increases sigmoidally with the extent of filamentation and that this dependence is characterized by unique parameters that are specific to bacterial strain, antibiotic dose, and growth condition. Modeling demonstrates how the single‐cell lysis probabilities can give rise to population‐level biomass dynamics, which were experimentally validated. This mapping provides insights into how the population biomass time‐kill curve emerges from single cells and allows the representation of both single‐ and population‐level responses with universal parameters. John Wiley and Sons Inc. 2023-05-10 /pmc/articles/PMC10333910/ http://dx.doi.org/10.15252/msb.202211475 Text en © 2023 The Authors. Published under the terms of the CC BY 4.0 license. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Kim, Kyeri Wang, Teng Ma, Helena R Şimşek, Emrah Li, Boyan Andreani, Virgile You, Lingchong Mapping single‐cell responses to population‐level dynamics during antibiotic treatment |
title | Mapping single‐cell responses to population‐level dynamics during antibiotic treatment |
title_full | Mapping single‐cell responses to population‐level dynamics during antibiotic treatment |
title_fullStr | Mapping single‐cell responses to population‐level dynamics during antibiotic treatment |
title_full_unstemmed | Mapping single‐cell responses to population‐level dynamics during antibiotic treatment |
title_short | Mapping single‐cell responses to population‐level dynamics during antibiotic treatment |
title_sort | mapping single‐cell responses to population‐level dynamics during antibiotic treatment |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333910/ http://dx.doi.org/10.15252/msb.202211475 |
work_keys_str_mv | AT kimkyeri mappingsinglecellresponsestopopulationleveldynamicsduringantibiotictreatment AT wangteng mappingsinglecellresponsestopopulationleveldynamicsduringantibiotictreatment AT mahelenar mappingsinglecellresponsestopopulationleveldynamicsduringantibiotictreatment AT simsekemrah mappingsinglecellresponsestopopulationleveldynamicsduringantibiotictreatment AT liboyan mappingsinglecellresponsestopopulationleveldynamicsduringantibiotictreatment AT andreanivirgile mappingsinglecellresponsestopopulationleveldynamicsduringantibiotictreatment AT youlingchong mappingsinglecellresponsestopopulationleveldynamicsduringantibiotictreatment |