Cargando…
Trichoderma species from plant and soil: An excellent resource for biosynthesis of terpenoids with versatile bioactivities
BACKGROUND: Trichoderma species are rich source of bioactive secondary metabolites. In the past decades, a series of secondary metabolites were reported from different Trichoderma fungi, among which terpenoids possessing versatile structural diversities and extensive pharmacological activities are o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334134/ https://www.ncbi.nlm.nih.gov/pubmed/36195283 http://dx.doi.org/10.1016/j.jare.2022.09.010 |
Sumario: | BACKGROUND: Trichoderma species are rich source of bioactive secondary metabolites. In the past decades, a series of secondary metabolites were reported from different Trichoderma fungi, among which terpenoids possessing versatile structural diversities and extensive pharmacological activities are one of the particularly important categories. AIM OF REVIEW: The review aims to summarize the terpenoids isolated from Trichoderma species regarding their structural diversities, biological activities, and promising biosynthetic potentials. KEY SCIENTIFIC CONCEPTS OF REVIEW: So far, a total of 253 terpenoids, including 202 sesquiterpenes, 48 diterpenes, 2 monoterpenes and 1 meroterpenoid, were isolated and identified from Trichoderma species between 1948 and 2022. Pharmacological investigations of Trichoderma terpenoids mainly focused on their antibacterial activities, antifungal activities, inhibitory activities on marine plankton species and cytotoxic activities, indicating that Trichoderma species are important microbial agents for drug discovery and environmentally friendly agrochemicals development. Intriguing chemistry and enzymology involved in the biosynthesis of Trichoderma terpenoids were also presented to facilitate further precise genome mining-guided novel structure discovery. Taken together, the abundance of novel skeletons, bioactivities and biosynthetic potentials presents new opportunities for drug and agrochemicals discovery, genome mining and enzymology exploration from Trichoderma species. The work will provide references for the profound study of terpenoids derived from Trichoderma, and facilitate further studies on Trichoderma species in the areas of chemistry, medicine, agriculture and microbiology. |
---|