Cargando…
Calibrating Data Mismatches in Deep Learning-Based Quantitative Ultrasound Using Setting Transfer Functions
Deep learning (DL) can fail when there are data mismatches between training and testing data distributions. Due to its operator-dependent nature, acquisition-related data mismatches, caused by different scanner settings, can occur in ultrasound imaging. As a result, it is crucial to mitigate the eff...
Autores principales: | Soylu, Ufuk, Oelze, Michael L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334367/ https://www.ncbi.nlm.nih.gov/pubmed/37030869 http://dx.doi.org/10.1109/TUFFC.2023.3263119 |
Ejemplares similares
-
A Data-Efficient Deep Learning Strategy for Tissue Characterization via Quantitative Ultrasound: Zone Training
por: Soylu, Ufuk, et al.
Publicado: (2023) -
PLS Subspace-Based Calibration Transfer for Near-Infrared Spectroscopy Quantitative Analysis
por: Zhao, Yuhui, et al.
Publicado: (2019) -
Deep learning approach for automatic out-of-plane needle localisation for semi-automatic ultrasound probe calibration
por: Groves, Leah A., et al.
Publicado: (2019) -
High Data Rate Communications In Vivo Using Ultrasound
por: Kou, Zhengchang, et al.
Publicado: (2021) -
Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning Approach
por: Tsai, Ming-Chin, et al.
Publicado: (2022)