Cargando…
CMOT: Cross-Modality Optimal Transport for multimodal inference
Multimodal measurements of single-cell sequencing technologies facilitate a comprehensive understanding of specific cellular and molecular mechanisms. However, simultaneous profiling of multiple modalities of single cells is challenging, and data integration remains elusive due to missing modalities...
Autores principales: | Alatkar, Sayali Anil, Wang, Daifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334579/ https://www.ncbi.nlm.nih.gov/pubmed/37434182 http://dx.doi.org/10.1186/s13059-023-02989-8 |
Ejemplares similares
-
DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype–phenotype prediction
por: Chandrashekar, Pramod Bharadwaj, et al.
Publicado: (2023) -
Single-cell network biology characterizes cell type gene regulation for drug repurposing and phenotype prediction in Alzheimer’s disease
por: Gupta, Chirag, et al.
Publicado: (2022) -
Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption
por: Hartwig, Fernando Pires, et al.
Publicado: (2017) -
Rampant False Detection of Adaptive Phenotypic Optimization by ParTI-Based Pareto Front Inference
por: Sun, Mengyi, et al.
Publicado: (2020) -
Inferring Human Immunodeficiency Virus 1 Proviral Integration Dates With Bayesian Inference
por: Jones, Bradley R, et al.
Publicado: (2023)