Cargando…

Functional Study of SAMD9L in Familial Gastric Cancer

BACKGROUND: Familial aggregation occurs in approximately 10% of cases of gastric cancer. The genetic predisposition or cause of the disease in only about 40% of hereditary gastric cancer cases is known, while the genetic factors of the remaining cases remain to be studied. METHODS: Samples were coll...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaixuan, Xu, Xiaobin, Zhang, Jiaxuan, Tang, Shihui, Liu, Xinxin, Wang, Shuwei, Hu, Penggao, Dai, Xiang, Luo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Turkish Society of Gastroenterology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334681/
https://www.ncbi.nlm.nih.gov/pubmed/37158533
http://dx.doi.org/10.5152/tjg.2023.22267
_version_ 1785070911561400320
author Kaixuan, Xu
Xiaobin, Zhang
Jiaxuan, Tang
Shihui, Liu
Xinxin, Wang
Shuwei, Hu
Penggao, Dai
Xiang, Luo
author_facet Kaixuan, Xu
Xiaobin, Zhang
Jiaxuan, Tang
Shihui, Liu
Xinxin, Wang
Shuwei, Hu
Penggao, Dai
Xiang, Luo
author_sort Kaixuan, Xu
collection PubMed
description BACKGROUND: Familial aggregation occurs in approximately 10% of cases of gastric cancer. The genetic predisposition or cause of the disease in only about 40% of hereditary gastric cancer cases is known, while the genetic factors of the remaining cases remain to be studied. METHODS: Samples were collected from a family with gastric cancer, including 3 gastric cancer and 17 healthy samples. Whole-exome sequencing was performed on samples from 3 patients with gastric cancer and 1 sample from healthy peripheral blood. SAMD9L was knocked down using small interfering RNAs and short hairpin RNA. The expression of SAMD9L was detected by quantitative real-time polymerase chain reaction and Western blot in SGC-7901 cells. CCK-8 assay was used to detect the proliferation of gastric cancer cells. The migration and invasion of gastric cancer cells were detected by Transwell assay and scratch assay. The cell apoptosis was detected by flow cytometry. RESULTS: Twelve single-nucleotide variants and 9 insertions/deletions mutation sites were identified as candidate genes. Among them, SAMD9L regulates cell proliferation as a tumor suppressor gene. The experiments of knocking down SAMD9L in SGC-7901 cells revealed that reduced expression of SAMD9L significantly enhanced the proliferation, migration, and invasion of SGC-7901 cells. CONCLUSIONS: These results suggest that SAMD9L inhibits the proliferation of gastric cancer cells, thereby increasing the risk of gastric cancer in people with SAMD9L downregulation. Therefore, SAMD9L may represent a susceptibility gene of this gastric cancer family.
format Online
Article
Text
id pubmed-10334681
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Turkish Society of Gastroenterology
record_format MEDLINE/PubMed
spelling pubmed-103346812023-07-12 Functional Study of SAMD9L in Familial Gastric Cancer Kaixuan, Xu Xiaobin, Zhang Jiaxuan, Tang Shihui, Liu Xinxin, Wang Shuwei, Hu Penggao, Dai Xiang, Luo Turk J Gastroenterol Original Article BACKGROUND: Familial aggregation occurs in approximately 10% of cases of gastric cancer. The genetic predisposition or cause of the disease in only about 40% of hereditary gastric cancer cases is known, while the genetic factors of the remaining cases remain to be studied. METHODS: Samples were collected from a family with gastric cancer, including 3 gastric cancer and 17 healthy samples. Whole-exome sequencing was performed on samples from 3 patients with gastric cancer and 1 sample from healthy peripheral blood. SAMD9L was knocked down using small interfering RNAs and short hairpin RNA. The expression of SAMD9L was detected by quantitative real-time polymerase chain reaction and Western blot in SGC-7901 cells. CCK-8 assay was used to detect the proliferation of gastric cancer cells. The migration and invasion of gastric cancer cells were detected by Transwell assay and scratch assay. The cell apoptosis was detected by flow cytometry. RESULTS: Twelve single-nucleotide variants and 9 insertions/deletions mutation sites were identified as candidate genes. Among them, SAMD9L regulates cell proliferation as a tumor suppressor gene. The experiments of knocking down SAMD9L in SGC-7901 cells revealed that reduced expression of SAMD9L significantly enhanced the proliferation, migration, and invasion of SGC-7901 cells. CONCLUSIONS: These results suggest that SAMD9L inhibits the proliferation of gastric cancer cells, thereby increasing the risk of gastric cancer in people with SAMD9L downregulation. Therefore, SAMD9L may represent a susceptibility gene of this gastric cancer family. Turkish Society of Gastroenterology 2023-05-01 /pmc/articles/PMC10334681/ /pubmed/37158533 http://dx.doi.org/10.5152/tjg.2023.22267 Text en © 2023 authors https://creativecommons.org/licenses/by/4.0/ Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Original Article
Kaixuan, Xu
Xiaobin, Zhang
Jiaxuan, Tang
Shihui, Liu
Xinxin, Wang
Shuwei, Hu
Penggao, Dai
Xiang, Luo
Functional Study of SAMD9L in Familial Gastric Cancer
title Functional Study of SAMD9L in Familial Gastric Cancer
title_full Functional Study of SAMD9L in Familial Gastric Cancer
title_fullStr Functional Study of SAMD9L in Familial Gastric Cancer
title_full_unstemmed Functional Study of SAMD9L in Familial Gastric Cancer
title_short Functional Study of SAMD9L in Familial Gastric Cancer
title_sort functional study of samd9l in familial gastric cancer
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334681/
https://www.ncbi.nlm.nih.gov/pubmed/37158533
http://dx.doi.org/10.5152/tjg.2023.22267
work_keys_str_mv AT kaixuanxu functionalstudyofsamd9linfamilialgastriccancer
AT xiaobinzhang functionalstudyofsamd9linfamilialgastriccancer
AT jiaxuantang functionalstudyofsamd9linfamilialgastriccancer
AT shihuiliu functionalstudyofsamd9linfamilialgastriccancer
AT xinxinwang functionalstudyofsamd9linfamilialgastriccancer
AT shuweihu functionalstudyofsamd9linfamilialgastriccancer
AT penggaodai functionalstudyofsamd9linfamilialgastriccancer
AT xiangluo functionalstudyofsamd9linfamilialgastriccancer