Cargando…
Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche
Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine path...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334811/ https://www.ncbi.nlm.nih.gov/pubmed/37399418 http://dx.doi.org/10.1073/pnas.2301115120 |
_version_ | 1785070926514094080 |
---|---|
author | Liang, Qiaochu Ma, Caixia Crowley, Shauna M. Allaire, Joannie M. Han, Xiao Chong, Raymond W. W. Packer, Nicolle H. Yu, Hong Bing Vallance, Bruce A. |
author_facet | Liang, Qiaochu Ma, Caixia Crowley, Shauna M. Allaire, Joannie M. Han, Xiao Chong, Raymond W. W. Packer, Nicolle H. Yu, Hong Bing Vallance, Bruce A. |
author_sort | Liang, Qiaochu |
collection | PubMed |
description | Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host’s intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host’s intestinal mucosa. |
format | Online Article Text |
id | pubmed-10334811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-103348112023-07-12 Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche Liang, Qiaochu Ma, Caixia Crowley, Shauna M. Allaire, Joannie M. Han, Xiao Chong, Raymond W. W. Packer, Nicolle H. Yu, Hong Bing Vallance, Bruce A. Proc Natl Acad Sci U S A Biological Sciences Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host’s intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host’s intestinal mucosa. National Academy of Sciences 2023-07-03 2023-07-11 /pmc/articles/PMC10334811/ /pubmed/37399418 http://dx.doi.org/10.1073/pnas.2301115120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Liang, Qiaochu Ma, Caixia Crowley, Shauna M. Allaire, Joannie M. Han, Xiao Chong, Raymond W. W. Packer, Nicolle H. Yu, Hong Bing Vallance, Bruce A. Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche |
title | Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche |
title_full | Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche |
title_fullStr | Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche |
title_full_unstemmed | Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche |
title_short | Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche |
title_sort | sialic acid plays a pivotal role in licensing citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334811/ https://www.ncbi.nlm.nih.gov/pubmed/37399418 http://dx.doi.org/10.1073/pnas.2301115120 |
work_keys_str_mv | AT liangqiaochu sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT macaixia sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT crowleyshaunam sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT allairejoanniem sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT hanxiao sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT chongraymondww sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT packernicolleh sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT yuhongbing sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche AT vallancebrucea sialicacidplaysapivotalroleinlicensingcitrobacterrodentiumstransitionfromtheintestinallumentoamucosaladherentniche |