Cargando…
Current Landscape of Generative Adversarial Networks for Facial Deidentification in Dermatology: Systematic Review and Evaluation
BACKGROUND: Deidentifying facial images is critical for protecting patient anonymity in the era of increasing tools for automatic image analysis in dermatology. OBJECTIVE: The aim of this paper was to review the current literature in the field of automatic facial deidentification algorithms. METHODS...
Autores principales: | Park, Christine, Jeong, Hyeon Ki, Henao, Ricardo, Kheterpal, Meenal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334885/ http://dx.doi.org/10.2196/35497 |
Ejemplares similares
-
Deep Learning in Dermatology: A Systematic Review of Current Approaches, Outcomes, and Limitations
por: Jeong, Hyeon Ki, et al.
Publicado: (2022) -
Consent and Deidentification of Patient Images in Dermatology Journals: Observational Study
por: Nanda, Japbani K, et al.
Publicado: (2022) -
Lesion identification and malignancy prediction from clinical dermatological images
por: Xia, Meng, et al.
Publicado: (2022) -
k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification †
por: Meden, Blaž, et al.
Publicado: (2018) -
Private Face Image Generation Method Based on Deidentification in Low Light
por: Dong, Beibei, et al.
Publicado: (2022)