Cargando…
Assessing the Generalizability of Deep Learning Models Trained on Standardized and Nonstandardized Images and Their Performance Against Teledermatologists: Retrospective Comparative Study
BACKGROUND: Convolutional neural networks (CNNs) are a type of artificial intelligence that shows promise as a diagnostic aid for skin cancer. However, the majority are trained using retrospective image data sets with varying image capture standardization. OBJECTIVE: The aim of our study was to use...
Autores principales: | Oloruntoba, Ayooluwatomiwa I, Vestergaard, Tine, Nguyen, Toan D, Yu, Zhen, Sashindranath, Maithili, Betz-Stablein, Brigid, Soyer, H Peter, Ge, Zongyuan, Mar, Victoria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334907/ http://dx.doi.org/10.2196/35150 |
Ejemplares similares
-
Overdiagnosis in Melanoma Screening: Is It a Real Problem?
por: Betz-Stablein, Brigid, et al.
Publicado: (2023) -
French Teledermatologists: Activity and Motivations Prior to the COVID-19 Pandemic
por: BATAILLE, Mathieu, et al.
Publicado: (2021) -
Practice Models and Challenges in Teledermatology: A Study of Collective Experiences from Teledermatologists
por: Armstrong, April W., et al.
Publicado: (2011) -
Nonstandard logics and nonstandard matrics in physics
por: Honig, William M
Publicado: (1995) -
Body Site Distribution of Acquired Melanocytic Naevi and Associated Characteristics in the General Population of Caucasian Adults: A Scoping Review
por: Jayasinghe, Dilki, et al.
Publicado: (2022)