Cargando…
NeuroCNVscore: a tissue-specific framework to prioritise the pathogenicity of CNVs in neurodevelopmental disorders
BACKGROUND: Neurodevelopmental disorders (NDDs) are associated with altered development of the brain especially in childhood. Copy number variants (CNVs) play a crucial role in the genetic aetiology of NDDs by disturbing gene expression directly at linear sequence or remotely at three-dimensional ge...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335557/ https://www.ncbi.nlm.nih.gov/pubmed/37407247 http://dx.doi.org/10.1136/bmjpo-2023-001966 |
Sumario: | BACKGROUND: Neurodevelopmental disorders (NDDs) are associated with altered development of the brain especially in childhood. Copy number variants (CNVs) play a crucial role in the genetic aetiology of NDDs by disturbing gene expression directly at linear sequence or remotely at three-dimensional genome level in a tissue-specific manner. Despite the substantial increase in NDD studies employing whole-genome sequencing, there is no specific tool for prioritising the pathogenicity of CNVs in the context of NDDs. METHODS: Using an XGBoost classifier, we integrated 189 features that represent genomic sequences, gene information and functional/genomic segments for evaluating genome-wide CNVs in a neuro/brain-specific manner, to develop a new tool, neuroCNVscore. We used Human Phenotype Ontology to construct an independent NDD-related set. RESULTS: Our neuroCNVscore framework (https://github.com/lxsbch/neuroCNVscore) achieved high predictive performance (precision recall=0.82; area under curve=0.85) and outperformed an existing reference method SVScore. Notably, the predicted pathogenic CNVs showed enrichment in known genes associated with autism. CONCLUSIONS: NeuroCNVscore prioritises functional, deleterious and pathogenic CNVs in NDDs at whole genome-wide level, which is important for genetic studies and clinical genomic screening of NDDs as well as for providing novel biological insights into NDDs. |
---|