Cargando…

Meta-learning approach for bacteria classification and identification of informative genes of the Bacillus megaterium: tomato roots tissue interaction

Plant growth-promoting rhizobacteria (PGPRs) are bacteria that colonize the plant roots. These beneficial bacteria have an influence on plant development through multiple mechanisms, such as nutrient availability, alleviating biotic and abiotic stress, and secrete phytohormones. Therefore, their ino...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodrigues, Vânia, Deusdado, Sérgio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335980/
https://www.ncbi.nlm.nih.gov/pubmed/37449251
http://dx.doi.org/10.1007/s13205-023-03690-0
Descripción
Sumario:Plant growth-promoting rhizobacteria (PGPRs) are bacteria that colonize the plant roots. These beneficial bacteria have an influence on plant development through multiple mechanisms, such as nutrient availability, alleviating biotic and abiotic stress, and secrete phytohormones. Therefore, their inoculation constitutes a powerful tool towards sustainable agriculture and crop production. To understand plant-PGPRs interaction we present the classification of PGPR using machine learning and meta-learning classifiers namely Support Vector Machine (SVM), Kernel Logistic Regression (KLR), meta-SVM and meta-KLR to predict the presence of Bacillus megaterium inoculated in tomato root tissues using publicly available transcriptomic data. The original dataset presents 36 significantly differentially expressed genes. As the meta-KLR achieved near-optimal performance considering all the relevant metrics, this meta learner was afterwards used to identify the informative genes (IGs). The outcomes showed 157 IGs, being present all significantly differentially expressed genes previously identified. Among the IGs, 113 were identified as tomato genes, 5 as Bacillus subtilis proteins, 1 as Escherichia coli protein and 6 were unidentified. Then, a functional enrichment analysis of the tomato IGs showed 175 biological processes, 22 molecular functions and 20 KEGG pathways involved in B. megaterium–tomato interaction. Furthermore, the biological networks study of their Arabidopsis thaliana orthologous genes identified the co-expression, predicted interaction, shared protein domains and co-localization networks. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03690-0.