Cargando…
Multimodal multitask learning for predicting MCI to AD conversion using stacked polynomial attention network and adaptive exponential decay
Early identification and treatment of moderate cognitive impairment (MCI) can halt or postpone Alzheimer’s disease (AD) and preserve brain function. For prompt diagnosis and AD reversal, precise prediction in the early and late phases of MCI is essential. This research investigates multimodal framew...
Autores principales: | Ho, Ngoc-Huynh, Jeong, Yang-Hyung, Kim, Jahae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336016/ https://www.ncbi.nlm.nih.gov/pubmed/37433809 http://dx.doi.org/10.1038/s41598-023-37500-7 |
Ejemplares similares
-
Early MCI-to-AD Conversion Prediction Using Future Value Forecasting of Multimodal Features
por: Minhas, Sidra, et al.
Publicado: (2021) -
Orthogonal polynomials for exponential weights
por: Levin, Eli, et al.
Publicado: (2001) -
An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automatic Prognosis of MCI Patients
por: Aksu, Yaman, et al.
Publicado: (2011) -
AD-NET: Age-adjust neural network for improved MCI to AD conversion prediction
por: Gao, Fei, et al.
Publicado: (2020) -
Limit theorems of polynomial approximation with exponential weights
por: Ganzburg, Michael I
Publicado: (2008)