Cargando…

MicroRNA-146a negatively regulates inflammation via the IRAK1/TRAF6/NF-κB signaling pathway in dry eye

Inflammation is a key factor in the pathogenesis of dry eye disease (DED). We aimed to investigate the role of microRNA-146a (miR-146a) in regulating corneal inflammation in a mouse model of benzalkonium chloride (BAC)-induced dry eye and the TNF-α-induced NF-κB signaling pathway in human corneal ep...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Ruifang, Gao, Juan, Wang, Liming, Hao, Peng, Chen, Xi, Wang, Yuchuan, Jiang, Zhixin, Jiang, Li, Wang, Ting, Zhu, Lin, Li, Xuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336050/
https://www.ncbi.nlm.nih.gov/pubmed/37433841
http://dx.doi.org/10.1038/s41598-023-38367-4
Descripción
Sumario:Inflammation is a key factor in the pathogenesis of dry eye disease (DED). We aimed to investigate the role of microRNA-146a (miR-146a) in regulating corneal inflammation in a mouse model of benzalkonium chloride (BAC)-induced dry eye and the TNF-α-induced NF-κB signaling pathway in human corneal epithelial cells (HCECs). A mouse model of dry eye was established by administering with BAC to BALB/c mice, and the expression of TNF-α, IL-1β, IL-6, IL-8, cyclooxygenase 2 (COX2), interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) in the corneas of dry eye model mice was significantly increased; this was accompanied by the upregulation of miR-146a and activation of the NF-κB pathway. In vitro, TNF-α induced miR-146a expression in HCECs, while the NF-κB inhibitor SC-514 reduced the expression of miR-146a. Overexpression of miR-146a decreased the expression of IRAK1 and TRAF6, which have been identified as targets of miR-146a. Furthermore, overexpression of miR-146a suppressed NF-κB p65 translocation from the cytoplasm to the nucleus. Moreover, overexpression of miR-146a attenuated the TNF-α-induced expression of IL-6, IL-8, COX2 and intercellular adhesion molecule 1 (ICAM1), while inhibition of miR-146a exerted the opposite effect. Our results suggest that miR-146a mediates the inflammatory response in DED. MiR-146a negatively regulates inflammation in HCECs through the IRAK1/TRAF6/NF-κB pathway, and this may serve as a potential therapeutic approach for the treatment of DED.