Cargando…
MetaFlux: Meta-learning global carbon fluxes from sparse spatiotemporal observations
We provide a global, long-term carbon flux dataset of gross primary production and ecosystem respiration generated using meta-learning, called MetaFlux. The idea behind meta-learning stems from the need to learn efficiently given sparse data by learning how to learn broad features across tasks to be...
Autores principales: | Nathaniel, Juan, Liu, Jiangong, Gentine, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336080/ https://www.ncbi.nlm.nih.gov/pubmed/37433802 http://dx.doi.org/10.1038/s41597-023-02349-y |
Ejemplares similares
-
The FLUXCOM ensemble of global land-atmosphere energy fluxes
por: Jung, Martin, et al.
Publicado: (2019) -
Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest
por: Zeng, Jiye, et al.
Publicado: (2020) -
Global 1-km present and future hourly anthropogenic heat flux
por: Varquez, Alvin Christopher Galang, et al.
Publicado: (2021) -
Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
por: Xie, Mingjuan, et al.
Publicado: (2023) -
Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure
por: Winck, Bruna R., et al.
Publicado: (2023)