Cargando…

Bound entanglement is not Lorentz invariant

Bound entanglement, in contrast to free entanglement, cannot be distilled into maximally entangled states by two local observers applying measurements and utilizing classical communication. In this paper we ask whether a relativistic observer classifies states according to being separable, bound or...

Descripción completa

Detalles Bibliográficos
Autores principales: Caban, Paweł, Hiesmayr, Beatrix C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336123/
https://www.ncbi.nlm.nih.gov/pubmed/37433840
http://dx.doi.org/10.1038/s41598-023-38217-3
Descripción
Sumario:Bound entanglement, in contrast to free entanglement, cannot be distilled into maximally entangled states by two local observers applying measurements and utilizing classical communication. In this paper we ask whether a relativistic observer classifies states according to being separable, bound or free entangled in the same manner as an unboosted observer. Surprisingly, this turns out not to be the case. And that even if the system in a given inertial frame of reference is separable with respect to the partition momenta versus spins. In detail, we show that if the spin state is initially bound entangled, some boosted observers observe their spin states to be either bound entangled, separable or free entangled. This also explains why a general measure of the entanglement property is difficult to find.