Cargando…
Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China
INTRODUCTION: Soil microbial communities are critical in regulating grassland biogeochemical cycles and ecosystem functions, but the mechanisms of how environmental factors affect changes in the structural composition and diversity of soil microbial communities in different grassland soil types is n...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336218/ https://www.ncbi.nlm.nih.gov/pubmed/37448571 http://dx.doi.org/10.3389/fmicb.2023.1205574 |
_version_ | 1785071161502072832 |
---|---|
author | Ma, Xinwei Ren, Baihui Yu, Jianxin Wang, Jiayu Bai, Long Li, Jiahuan Li, Daiyan Meng, Meng |
author_facet | Ma, Xinwei Ren, Baihui Yu, Jianxin Wang, Jiayu Bai, Long Li, Jiahuan Li, Daiyan Meng, Meng |
author_sort | Ma, Xinwei |
collection | PubMed |
description | INTRODUCTION: Soil microbial communities are critical in regulating grassland biogeochemical cycles and ecosystem functions, but the mechanisms of how environmental factors affect changes in the structural composition and diversity of soil microbial communities in different grassland soil types is not fully understood in northwest Liaoning, China. METHODS: We investigated the characteristics and drivers of bacterial and fungal communities in 4 grassland soil types with 11 sites across this region using high-throughput Illumina sequencing. RESULTS AND DISCUSSION: Actinobacteria and Ascomycota were the dominant phyla of bacterial and fungal communities, respectively, but their relative abundances were not significantly different among different grassland soil types. The abundance, number of OTUs, number of species and diversity of both bacterial and fungal communities in warm and temperate ecotone soil were the highest, while the warm-temperate shrub soil had the lowest microbial diversity. Besides, environmental factors were not significantly correlated with soil bacterial Alpha diversity index. However, there was a highly significant negative correlation between soil pH and Shannon index of fungal communities, and a highly significant positive correlation between plant cover and Chao1 index as well as Observed species of fungal communities. Analysis of similarities showed that the structural composition of microbial communities differed significantly among different grassland soil types. Meanwhile, the microbial community structure of temperate steppe-sandy soil was significantly different from that of other grassland soil types. Redundancy analysis revealed that soil total nitrogen content, pH and conductivity were important influencing factors causing changes in soil bacterial communities, while soil organic carbon, total nitrogen content and conductivity mainly drove the differentiation of soil fungal communities. In addition, the degree of connection in the soil bacterial network of grassland was much higher than that in the fungal network and soil bacterial and fungal communities were inconsistently limited by environmental factors. Our results showed that the microbial community structure, composition and diversity of different grassland soil types in northwest Liaoning differed significantly and were significantly influenced by environmental factors. Microbial community structure and the observation of soil total nitrogen and organic carbon content can predict the health changes of grassland ecosystems to a certain extent. |
format | Online Article Text |
id | pubmed-10336218 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103362182023-07-13 Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China Ma, Xinwei Ren, Baihui Yu, Jianxin Wang, Jiayu Bai, Long Li, Jiahuan Li, Daiyan Meng, Meng Front Microbiol Microbiology INTRODUCTION: Soil microbial communities are critical in regulating grassland biogeochemical cycles and ecosystem functions, but the mechanisms of how environmental factors affect changes in the structural composition and diversity of soil microbial communities in different grassland soil types is not fully understood in northwest Liaoning, China. METHODS: We investigated the characteristics and drivers of bacterial and fungal communities in 4 grassland soil types with 11 sites across this region using high-throughput Illumina sequencing. RESULTS AND DISCUSSION: Actinobacteria and Ascomycota were the dominant phyla of bacterial and fungal communities, respectively, but their relative abundances were not significantly different among different grassland soil types. The abundance, number of OTUs, number of species and diversity of both bacterial and fungal communities in warm and temperate ecotone soil were the highest, while the warm-temperate shrub soil had the lowest microbial diversity. Besides, environmental factors were not significantly correlated with soil bacterial Alpha diversity index. However, there was a highly significant negative correlation between soil pH and Shannon index of fungal communities, and a highly significant positive correlation between plant cover and Chao1 index as well as Observed species of fungal communities. Analysis of similarities showed that the structural composition of microbial communities differed significantly among different grassland soil types. Meanwhile, the microbial community structure of temperate steppe-sandy soil was significantly different from that of other grassland soil types. Redundancy analysis revealed that soil total nitrogen content, pH and conductivity were important influencing factors causing changes in soil bacterial communities, while soil organic carbon, total nitrogen content and conductivity mainly drove the differentiation of soil fungal communities. In addition, the degree of connection in the soil bacterial network of grassland was much higher than that in the fungal network and soil bacterial and fungal communities were inconsistently limited by environmental factors. Our results showed that the microbial community structure, composition and diversity of different grassland soil types in northwest Liaoning differed significantly and were significantly influenced by environmental factors. Microbial community structure and the observation of soil total nitrogen and organic carbon content can predict the health changes of grassland ecosystems to a certain extent. Frontiers Media S.A. 2023-06-28 /pmc/articles/PMC10336218/ /pubmed/37448571 http://dx.doi.org/10.3389/fmicb.2023.1205574 Text en Copyright © 2023 Ma, Ren, Yu, Wang, Bai, Li, Li and Meng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Ma, Xinwei Ren, Baihui Yu, Jianxin Wang, Jiayu Bai, Long Li, Jiahuan Li, Daiyan Meng, Meng Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China |
title | Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China |
title_full | Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China |
title_fullStr | Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China |
title_full_unstemmed | Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China |
title_short | Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China |
title_sort | changes in grassland soil types lead to different characteristics of bacterial and fungal communities in northwest liaoning, china |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336218/ https://www.ncbi.nlm.nih.gov/pubmed/37448571 http://dx.doi.org/10.3389/fmicb.2023.1205574 |
work_keys_str_mv | AT maxinwei changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina AT renbaihui changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina AT yujianxin changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina AT wangjiayu changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina AT bailong changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina AT lijiahuan changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina AT lidaiyan changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina AT mengmeng changesingrasslandsoiltypesleadtodifferentcharacteristicsofbacterialandfungalcommunitiesinnorthwestliaoningchina |