Cargando…

BERTwalk for integrating gene networks to predict gene- to pathway-level properties

MOTIVATION: Graph representation learning is a fundamental problem in the field of data science with applications to integrative analysis of biological networks. Previous work in this domain was mostly limited to shallow representation techniques. A recent deep representation technique, BIONIC, has...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasser, Rami, Sharan, Roded
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336298/
https://www.ncbi.nlm.nih.gov/pubmed/37448813
http://dx.doi.org/10.1093/bioadv/vbad086
Descripción
Sumario:MOTIVATION: Graph representation learning is a fundamental problem in the field of data science with applications to integrative analysis of biological networks. Previous work in this domain was mostly limited to shallow representation techniques. A recent deep representation technique, BIONIC, has achieved state-of-the-art results in a variety of tasks but used arbitrarily defined components. RESULTS: Here, we present BERTwalk, an unsupervised learning scheme that combines the BERT masked language model with a network propagation regularization for graph representation learning. The transformation from networks to texts allows our method to naturally integrate different networks and provide features that inform not only nodes or edges but also pathway-level properties. We show that our BERTwalk model outperforms BIONIC, as well as four other recent methods, on two comprehensive benchmarks in yeast and human. We further show that our model can be utilized to infer functional pathways and their effects. AVAILABILITY AND IMPLEMENTATION: Code and data are available at https://github.com/raminass/BERTwalk. CONTACT: roded@tauex.tau.ac.il