Cargando…
Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer
Muscle-invasive urothelial cancer (MUC), characterized by high aggressiveness and significant heterogeneity, is currently lacking highly precise individualized treatment options. We used a computational pipeline to synthesize multiomics data from MUC patients using 10 clustering algorithms, which we...
Autores principales: | Chu, Guangdi, Ji, Xiaoyu, Wang, Yonghua, Niu, Haitao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336357/ https://www.ncbi.nlm.nih.gov/pubmed/37449047 http://dx.doi.org/10.1016/j.omtn.2023.06.001 |
Ejemplares similares
-
Multi-Omics Analysis of Novel Signature for Immunotherapy Response and Tumor Microenvironment Regulation Patterns in Urothelial Cancer
por: Chu, Guangdi, et al.
Publicado: (2021) -
Prognostic Value of Preoperative Albumin-to-Alkaline Phosphatase Ratio in Patients with Muscle-Invasive Bladder Cancer After Radical Cystectomy
por: Zhao, Ming, et al.
Publicado: (2020) -
Multiomics analysis of ferroptosis-related molecular subtypes in muscle-invasive bladder cancer immunotherapy
por: Wang, Haojie, et al.
Publicado: (2022) -
Multiomics and machine learning in lung cancer prognosis
por: Gao, Yanan, et al.
Publicado: (2020) -
Multiomics dynamic learning enables personalized diagnosis and prognosis for pancancer and cancer subtypes
por: Lu, Yuxing, et al.
Publicado: (2023)