Cargando…

Physical interactions in non-ideal fluids promote Turing patterns

Turing’s mechanism is often invoked to explain periodic patterns in nature, although direct experimental support is scarce. Turing patterns form in reaction–diffusion systems when the activating species diffuse much slower than the inhibiting species, and the involved reactions are highly nonlinear....

Descripción completa

Detalles Bibliográficos
Autores principales: Menou, Lucas, Luo, Chengjie, Zwicker, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336379/
https://www.ncbi.nlm.nih.gov/pubmed/37434500
http://dx.doi.org/10.1098/rsif.2023.0244
Descripción
Sumario:Turing’s mechanism is often invoked to explain periodic patterns in nature, although direct experimental support is scarce. Turing patterns form in reaction–diffusion systems when the activating species diffuse much slower than the inhibiting species, and the involved reactions are highly nonlinear. Such reactions can originate from cooperativity, whose physical interactions should also affect diffusion. We here take direct interactions into account and show that they strongly affect Turing patterns. We find that weak repulsion between the activator and inhibitor can substantially lower the required differential diffusivity and reaction nonlinearity. By contrast, strong interactions can induce phase separation, but the resulting length scale is still typically governed by the fundamental reaction–diffusion length scale. Taken together, our theory connects traditional Turing patterns with chemically active phase separation, thus describing a wider range of systems. Moreover, we demonstrate that even weak interactions affect patterns substantially, so they should be incorporated when modelling realistic systems.