Cargando…
Classification of asymmetry in mammography via the DenseNet convolutional neural network
PURPOSE: To investigate the effectiveness of a deep learning system based on the DenseNet convolutional neural network in diagnosing benign and malignant asymmetric lesions in mammography. METHODS: Clinical and image data from 460 women aged 23–82 years (47.57 ± 8.73 years) with asymmetric lesions w...
Autores principales: | Liao, Tingting, Li, Lin, Ouyang, Rushan, Lin, Xiaohui, Lai, Xiaohui, Cheng, Guanxun, Ma, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336404/ https://www.ncbi.nlm.nih.gov/pubmed/37448557 http://dx.doi.org/10.1016/j.ejro.2023.100502 |
Ejemplares similares
-
DenseNet-II: an improved deep convolutional neural network for melanoma cancer detection
por: Girdhar, Nancy, et al.
Publicado: (2022) -
Recovery of Ionospheric Signals Using Fully Convolutional DenseNet and Its Challenges
por: Mendoza, Merlin M., et al.
Publicado: (2021) -
DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using CT Image
por: Hasan, Najmul, et al.
Publicado: (2021) -
DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
por: Alshammari, Abdulaziz
Publicado: (2023) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019)