Cargando…

Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes

Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodi...

Descripción completa

Detalles Bibliográficos
Autores principales: Beckwée, Emile Jules, Watson, Geert, Houlleberghs, Maarten, Arenas Esteban, Daniel, Bals, Sara, Van Der Voort, Pascal, Breynaert, Eric, Martens, Johan, Baron, Gino V., Denayer, Joeri F.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336592/
https://www.ncbi.nlm.nih.gov/pubmed/37449178
http://dx.doi.org/10.1016/j.heliyon.2023.e17662
_version_ 1785071243626545152
author Beckwée, Emile Jules
Watson, Geert
Houlleberghs, Maarten
Arenas Esteban, Daniel
Bals, Sara
Van Der Voort, Pascal
Breynaert, Eric
Martens, Johan
Baron, Gino V.
Denayer, Joeri F.M.
author_facet Beckwée, Emile Jules
Watson, Geert
Houlleberghs, Maarten
Arenas Esteban, Daniel
Bals, Sara
Van Der Voort, Pascal
Breynaert, Eric
Martens, Johan
Baron, Gino V.
Denayer, Joeri F.M.
author_sort Beckwée, Emile Jules
collection PubMed
description Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
format Online
Article
Text
id pubmed-10336592
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103365922023-07-13 Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes Beckwée, Emile Jules Watson, Geert Houlleberghs, Maarten Arenas Esteban, Daniel Bals, Sara Van Der Voort, Pascal Breynaert, Eric Martens, Johan Baron, Gino V. Denayer, Joeri F.M. Heliyon Research Article Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. Elsevier 2023-06-28 /pmc/articles/PMC10336592/ /pubmed/37449178 http://dx.doi.org/10.1016/j.heliyon.2023.e17662 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Beckwée, Emile Jules
Watson, Geert
Houlleberghs, Maarten
Arenas Esteban, Daniel
Bals, Sara
Van Der Voort, Pascal
Breynaert, Eric
Martens, Johan
Baron, Gino V.
Denayer, Joeri F.M.
Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_full Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_fullStr Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_full_unstemmed Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_short Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
title_sort enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336592/
https://www.ncbi.nlm.nih.gov/pubmed/37449178
http://dx.doi.org/10.1016/j.heliyon.2023.e17662
work_keys_str_mv AT beckweeemilejules enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT watsongeert enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT houlleberghsmaarten enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT arenasestebandaniel enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT balssara enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT vandervoortpascal enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT breynaerteric enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT martensjohan enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT baronginov enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes
AT denayerjoerifm enablinghydratebasedmethanestorageundermildoperatingconditionsbyperiodicmesoporousorganosilicananotubes