Cargando…
Mechanical Behavior of Octopus Egg Tethers Composed of Topologically Constrained, Tandemly Repeated EGF Domains
[Image: see text] Whether and how intramolecular crosslinks in polymeric materials contribute to mechanical properties is debated in both experimental and theoretical arenas. The tethering threads of Octopus bimaculoides egg cases provide a rare window to investigate this question in a biomaterial....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336842/ https://www.ncbi.nlm.nih.gov/pubmed/37294315 http://dx.doi.org/10.1021/acs.biomac.3c00088 |
Sumario: | [Image: see text] Whether and how intramolecular crosslinks in polymeric materials contribute to mechanical properties is debated in both experimental and theoretical arenas. The tethering threads of Octopus bimaculoides egg cases provide a rare window to investigate this question in a biomaterial. The only detectable component of the load-bearing fibers in octopus threads is a 135 kDa protein, octovafibrin, comprising 29 tandem repeats of epidermal growth factor (EGF) each of which contains 3 intramolecular disulfide linkages. The N- and C-terminal C-type lectins mediate linear end-to-end octovafibrin self-assembly. Mechanical testing of threads shows that the regularly spaced disulfide linkages result in improved stiffness, toughness, and energy dissipation. In response to applied loads, molecular dynamics and X-ray scattering show that EGF-like domains deform by recruiting two hidden length β-sheet structures nested between the disulfides. The results of this study further the understanding of intramolecular crosslinking in polymers and provide a foundation for the mechanical contributions of EGF domains to the extracellular matrix. |
---|