Cargando…

Therapeutic effects of engineered exosome-based miR-25 and miR-181a treatment in spinocerebellar ataxia type 3 mice by silencing ATXN3

BACKGROUND: Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia worldwide, which is however in a lack of effective treatment. In view of that engineered exosomes are a promising non-invasive gene therapy transporter that can overcome the traditional problem o...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Zhenchu, Hu, Shenglan, Wu, Ziwei, He, Miao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337053/
https://www.ncbi.nlm.nih.gov/pubmed/37438701
http://dx.doi.org/10.1186/s10020-023-00695-6
Descripción
Sumario:BACKGROUND: Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia worldwide, which is however in a lack of effective treatment. In view of that engineered exosomes are a promising non-invasive gene therapy transporter that can overcome the traditional problem of poor drug delivery, the aim of this study was to evaluate, for the first time, the value of exosome-based microRNA therapy in SCA3 and the therapeutic effects of intravenously administrated ATXN3 targeting microRNAs in transgenic SCA3 mouse models. METHODS: The rabies virus glycoprotein (RVG) peptide–modified exosomes loaded with miR-25 or miR-181a were peripherally injected to enable targeted delivery of miRNAs to the brain of SCA3 mice. The behaviors, ATXN3 level, purkinje cell and other neuronal loss, and neuroinflammation were evaluated 4 weeks after initial treatment. RESULTS: The targeted and efficient delivery of miR-25 and miR-181a by modified exosomes substantially inhibited the mutant ATXN3 expression, reduced neuron apoptosis and induced motor improvements in SCA3 mouse models without increasing the neuroinflammatory response. CONCLUSIONS: Our study confirmed the therapeutic potential of engineered exosome-based miR-25 and miR-181a treatment in substantially reducing ATXN3 aggregation and cytotoxicity by relying on its targeted and efficient drug delivery performance in SCA3 mice. This treatment method shows a promising prospect for future clinical applications in SCA3. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s10020-023-00695-6.