Cargando…
Improvement of variables interpretability in kernel PCA
BACKGROUND: Kernel methods have been proven to be a powerful tool for the integration and analysis of high-throughput technologies generated data. Kernels offer a nonlinear version of any linear algorithm solely based on dot products. The kernelized version of principal component analysis is a valid...
Autores principales: | Briscik, Mitja, Dillies, Marie-Agnès, Déjean, Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337068/ https://www.ncbi.nlm.nih.gov/pubmed/37438763 http://dx.doi.org/10.1186/s12859-023-05404-y |
Ejemplares similares
-
Kernel-PCA data integration with enhanced interpretability
por: Reverter, Ferran, et al.
Publicado: (2014) -
Improving RLRN Image Splicing Detection with the Use of PCA and Kernel PCA
por: Moghaddasi, Zahra, et al.
Publicado: (2014) -
PCA Based Kernel Initialization for Convolutional Neural Networks
por: Wang, Yifeng, et al.
Publicado: (2020) -
Flexible Analog Search with Kernel PCA Embedded Molecule Vectors
por: Rensi, Stefano, et al.
Publicado: (2017) -
Comparing the performance of Kernel PCA Mix Chart with PCA Mix Chart for monitoring mixed quality characteristics
por: Ahsan, Muhammad, et al.
Publicado: (2022)