Cargando…
Overlapping filter bank convolutional neural network for multisubject multicategory motor imagery brain-computer interface
BACKGROUND: Motor imagery brain-computer interfaces (BCIs) is a classic and potential BCI technology achieving brain computer integration. In motor imagery BCI, the operational frequency band of the EEG greatly affects the performance of motor imagery EEG recognition model. However, as most algorith...
Autores principales: | Luo, Jing, Li, Jundong, Mao, Qi, Shi, Zhenghao, Liu, Haiqin, Ren, Xiaoyong, Hei, Xinhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337209/ https://www.ncbi.nlm.nih.gov/pubmed/37434221 http://dx.doi.org/10.1186/s13040-023-00336-y |
Ejemplares similares
-
Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
por: Devlaminck, Dieter, et al.
Publicado: (2011) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Exploring Sampling in the Detection of Multicategory EEG Signals
por: Siuly, Siuly, et al.
Publicado: (2015) -
An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
por: Kumar, Shiu, et al.
Publicado: (2017) -
Residential scene classification for gridded population sampling in developing countries using deep convolutional neural networks on satellite imagery
por: Chew, Robert F., et al.
Publicado: (2018)