Cargando…
Analysis of Fluoride-Free Content on Twitter: Topic Modeling Study
BACKGROUND: Although social media has the potential to spread misinformation, it can also be a valuable tool for elucidating the social factors that contribute to the onset of negative beliefs. As a result, data mining has become a widely used technique in infodemiology and infoveillance research to...
Autores principales: | Lotto, Matheus, Zakir Hussain, Irfhana, Kaur, Jasleen, Butt, Zahid Ahmad, Cruvinel, Thiago, Morita, Plinio P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337345/ https://www.ncbi.nlm.nih.gov/pubmed/37338975 http://dx.doi.org/10.2196/44586 |
Ejemplares similares
-
Characterization of False or Misleading Fluoride Content on Instagram: Infodemiology Study
por: Lotto, Matheus, et al.
Publicado: (2022) -
Tweeting for Health Using Real-time Mining and Artificial Intelligence–Based Analytics: Design and Development of a Big Data Ecosystem for Detecting and Analyzing Misinformation on Twitter
por: Morita, Plinio Pelegrini, et al.
Publicado: (2023) -
Exploring fluoride-free content on Twitter: A topic modeling analysis
por: Lotto, M, et al.
Publicado: (2023) -
Ethical principles for infodemiology and infoveillance studies concerning infodemic management on social media
por: Lotto, Matheus, et al.
Publicado: (2023) -
Psychophysiological Reactions of Internet Users Exposed to Fluoride Information and Disinformation: Protocol for a Randomized Controlled Trial
por: Lotto, Matheus, et al.
Publicado: (2022)