Cargando…
Tweeting for Health Using Real-time Mining and Artificial Intelligence–Based Analytics: Design and Development of a Big Data Ecosystem for Detecting and Analyzing Misinformation on Twitter
BACKGROUND: Digital misinformation, primarily on social media, has led to harmful and costly beliefs in the general population. Notably, these beliefs have resulted in public health crises to the detriment of governments worldwide and their citizens. However, public health officials need access to a...
Autores principales: | Morita, Plinio Pelegrini, Zakir Hussain, Irfhana, Kaur, Jasleen, Lotto, Matheus, Butt, Zahid Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337356/ https://www.ncbi.nlm.nih.gov/pubmed/37294603 http://dx.doi.org/10.2196/44356 |
Ejemplares similares
-
Analysis of Fluoride-Free Content on Twitter: Topic Modeling Study
por: Lotto, Matheus, et al.
Publicado: (2023) -
Infodemics surveillance system to detect and analyze health misinformation using big data and AI
por: Zakir Hussain, I, et al.
Publicado: (2023) -
Characterization of False or Misleading Fluoride Content on Instagram: Infodemiology Study
por: Lotto, Matheus, et al.
Publicado: (2022) -
What do computer scientists tweet? Analyzing the link-sharing practice on Twitter
por: Schmitt, Marco, et al.
Publicado: (2017) -
Analyzing Twitter as a Platform for Alzheimer-Related Dementia Awareness: Thematic Analyses of Tweets
por: Cheng, Tiffany Yi-mei, et al.
Publicado: (2018)