Cargando…
A Machine Learning Approach for the Prediction of Testicular Sperm Extraction in Nonobstructive Azoospermia: Algorithm Development and Validation Study
BACKGROUND: Testicular sperm extraction (TESE) is an essential therapeutic tool for the management of male infertility. However, it is an invasive procedure with a success rate up to 50%. To date, no model based on clinical and laboratory parameters is sufficiently powerful to accurately predict the...
Autores principales: | Bachelot, Guillaume, Dhombres, Ferdinand, Sermondade, Nathalie, Haj Hamid, Rahaf, Berthaut, Isabelle, Frydman, Valentine, Prades, Marie, Kolanska, Kamila, Selleret, Lise, Mathieu-D’Argent, Emmanuelle, Rivet-Danon, Diane, Levy, Rachel, Lamazière, Antonin, Dupont, Charlotte |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337455/ https://www.ncbi.nlm.nih.gov/pubmed/37342078 http://dx.doi.org/10.2196/44047 |
Ejemplares similares
-
Successful testicular sperm extraction after hematopoietic stem cell transplantation
por: Aworet, Ludmilla Ogouma, et al.
Publicado: (2022) -
Testicular sperm extraction (TESE) outcomes in the context of malignant disease: a systematic review
por: Ogouma, Ludmilla, et al.
Publicado: (2022) -
Surgical management of nonobstructive azoospermia
por: Tiseo, Bruno Camargo, et al.
Publicado: (2015) -
Impact of testicular cancer on sperm small non-coding RNA signature: a pilot study
por: Dupont, Charlotte, et al.
Publicado: (2023) -
Innovations in surgical management of nonobstructive azoospermia
por: Ran, Renzhong, et al.
Publicado: (2016)