Cargando…
Improving an Electronic Health Record–Based Clinical Prediction Model Under Label Deficiency: Network-Based Generative Adversarial Semisupervised Approach
BACKGROUND: Observational biomedical studies facilitate a new strategy for large-scale electronic health record (EHR) utilization to support precision medicine. However, data label inaccessibility is an increasingly important issue in clinical prediction, despite the use of synthetic and semisupervi...
Autores principales: | Li, Runze, Tian, Yu, Shen, Zhuyi, Li, Jin, Li, Jun, Ding, Kefeng, Li, Jingsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337516/ https://www.ncbi.nlm.nih.gov/pubmed/37310778 http://dx.doi.org/10.2196/47862 |
Ejemplares similares
-
Semisupervised adversarial neural networks for single-cell classification
por: Kimmel, Jacob C., et al.
Publicado: (2021) -
Semisupervised Generative Autoencoder for Single-Cell Data
por: Trong, Trung Ngo, et al.
Publicado: (2020) -
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Artificial Intelligence-Based Semisupervised Self-Training Algorithm in Pathological Tissue Image Segmentation
por: Li, Qun, et al.
Publicado: (2022) -
Recognition of Occluded Goods under Prior Inference Based on Generative Adversarial Network
por: Cao, Mingxuan, et al.
Publicado: (2023)