Cargando…
Automated analysis of unstructured clinical assessments improves emergency department triage performance: A retrospective deep learning analysis
OBJECTIVES: Efficient and accurate emergency department (ED) triage is critical to prioritize the sickest patients and manage department flow. We explored the use of electronic health record data and advanced predictive analytics to improve triage performance. METHODS: Using a data set of over 5 mil...
Autores principales: | Sax, Dana R., Warton, E. Margaret, Sofrygin, Oleg, Mark, Dustin G., Ballard, Dustin W., Kene, Mamata V., Vinson, David R., Reed, Mary E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337523/ https://www.ncbi.nlm.nih.gov/pubmed/37448487 http://dx.doi.org/10.1002/emp2.13003 |
Ejemplares similares
-
Evaluation of the Emergency Severity Index in US Emergency Departments for the Rate of Mistriage
por: Sax, Dana R., et al.
Publicado: (2023) -
Prospective Validation and Comparative Analysis of Coronary Risk Stratification Strategies Among Emergency Department Patients With Chest Pain
por: Mark, Dustin G., et al.
Publicado: (2021) -
Sensitivity of a Clinical Decision Rule and Early Computed Tomography in Aneurysmal Subarachnoid Hemorrhage
por: Mark, Dustin G., et al.
Publicado: (2015) -
Graded Coronary Risk Stratification for Emergency Department Patients With Chest Pain: A Controlled Cohort Study
por: Mark, Dustin G., et al.
Publicado: (2021) -
Clinical characteristics of COVID‐19 patients evaluated in the emergency department: A retrospective cohort study of 801 cases
por: Cotton, Dale M., et al.
Publicado: (2021)