Cargando…
Transferable learning on analog hardware
While analog neural network (NN) accelerators promise massive energy and time savings, an important challenge is to make them robust to static fabrication error. Present-day training methods for programmable photonic interferometer circuits, a leading analog NN platform, do not produce networks that...
Autores principales: | Vadlamani, Sri Krishna, Englund, Dirk, Hamerly, Ryan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337896/ https://www.ncbi.nlm.nih.gov/pubmed/37436989 http://dx.doi.org/10.1126/sciadv.adh3436 |
Ejemplares similares
-
Single-shot optical neural network
por: Bernstein, Liane, et al.
Publicado: (2023) -
Freely scalable and reconfigurable optical hardware for deep learning
por: Bernstein, Liane, et al.
Publicado: (2021) -
Physics successfully implements Lagrange multiplier optimization
por: Vadlamani, Sri Krishna, et al.
Publicado: (2020) -
Intermolecular charge transfer enhances the performance of molecular rectifiers
por: Sullivan, Ryan P., et al.
Publicado: (2022) -
Haynes-Shockley experiment analogs in surface and optoelectronics: Tunable surface electric field extracting nearly all photocarriers
por: Zhang, Yibo, et al.
Publicado: (2023)