Cargando…
Hierarchical graph transformer with contrastive learning for protein function prediction
MOTIVATION: In recent years, high-throughput sequencing technologies have made large-scale protein sequences accessible. However, their functional annotations usually rely on low-throughput and pricey experimental studies. Computational prediction models offer a promising alternative to accelerate t...
Autores principales: | Gu, Zhonghui, Luo, Xiao, Chen, Jiaxiao, Deng, Minghua, Lai, Luhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338137/ https://www.ncbi.nlm.nih.gov/pubmed/37369035 http://dx.doi.org/10.1093/bioinformatics/btad410 |
Ejemplares similares
-
Hierarchical graph learning for protein–protein interaction
por: Gao, Ziqi, et al.
Publicado: (2023) -
Coevolution-based prediction of key allosteric residues for protein function regulation
por: Xie, Juan, et al.
Publicado: (2023) -
Human Learning of Hierarchical Graphs
por: Xia, Xiaohuan, et al.
Publicado: (2023) -
Hierarchical Molecular Graph Self-Supervised Learning for property prediction
por: Zang, Xuan, et al.
Publicado: (2023) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021)