Cargando…
An encrypted network video stream dataset
Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belong...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338327/ https://www.ncbi.nlm.nih.gov/pubmed/37456120 http://dx.doi.org/10.1016/j.dib.2023.109335 |
_version_ | 1785071604474052608 |
---|---|
author | Fesl, Jan Sedlák, Daniel Macák, Tomáš Feslová, Marie Konopa, Michal |
author_facet | Fesl, Jan Sedlák, Daniel Macák, Tomáš Feslová, Marie Konopa, Michal |
author_sort | Fesl, Jan |
collection | PubMed |
description | Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belonging to a particular video stream is not constant over time or that it changes periodically and forms a specific fingerprint. Based on the knowledge of the fingerprint of a specific video stream, this video stream can be subsequently identified. Over several months of intensive work, our team has created a large dataset containing a large number of video streams that were captured by network traffic probes during their playback by end users. The video streams were deliberately chosen to fall thematically into pre-selected categories. We selected two primary platforms for streaming - PeerTube and YouTube The first platform was chosen because of the possibility of modifying any streaming parameters, while the second one was chosen because it is used by many people worldwide. Our dataset can be used to create and train machine learning models or heuristic algorithms, allowing encrypted video stream identification according to their content resp. type category or specifically. |
format | Online Article Text |
id | pubmed-10338327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103383272023-07-14 An encrypted network video stream dataset Fesl, Jan Sedlák, Daniel Macák, Tomáš Feslová, Marie Konopa, Michal Data Brief Data Article Most of the video content on the Internet today is distributed through online streaming platforms. To ensure user privacy, data transmissions are often encrypted using cryptographic protocols. In previous research, we first experimentally validated the idea that the amount of transmitted data belonging to a particular video stream is not constant over time or that it changes periodically and forms a specific fingerprint. Based on the knowledge of the fingerprint of a specific video stream, this video stream can be subsequently identified. Over several months of intensive work, our team has created a large dataset containing a large number of video streams that were captured by network traffic probes during their playback by end users. The video streams were deliberately chosen to fall thematically into pre-selected categories. We selected two primary platforms for streaming - PeerTube and YouTube The first platform was chosen because of the possibility of modifying any streaming parameters, while the second one was chosen because it is used by many people worldwide. Our dataset can be used to create and train machine learning models or heuristic algorithms, allowing encrypted video stream identification according to their content resp. type category or specifically. Elsevier 2023-06-22 /pmc/articles/PMC10338327/ /pubmed/37456120 http://dx.doi.org/10.1016/j.dib.2023.109335 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Fesl, Jan Sedlák, Daniel Macák, Tomáš Feslová, Marie Konopa, Michal An encrypted network video stream dataset |
title | An encrypted network video stream dataset |
title_full | An encrypted network video stream dataset |
title_fullStr | An encrypted network video stream dataset |
title_full_unstemmed | An encrypted network video stream dataset |
title_short | An encrypted network video stream dataset |
title_sort | encrypted network video stream dataset |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338327/ https://www.ncbi.nlm.nih.gov/pubmed/37456120 http://dx.doi.org/10.1016/j.dib.2023.109335 |
work_keys_str_mv | AT fesljan anencryptednetworkvideostreamdataset AT sedlakdaniel anencryptednetworkvideostreamdataset AT macaktomas anencryptednetworkvideostreamdataset AT feslovamarie anencryptednetworkvideostreamdataset AT konopamichal anencryptednetworkvideostreamdataset AT fesljan encryptednetworkvideostreamdataset AT sedlakdaniel encryptednetworkvideostreamdataset AT macaktomas encryptednetworkvideostreamdataset AT feslovamarie encryptednetworkvideostreamdataset AT konopamichal encryptednetworkvideostreamdataset |