Cargando…
Application of hybrid improved temporal convolution network model in time series prediction of river water quality
Time series prediction of river water quality is an important method to grasp the changes of river water quality and protect the river water environment. However, due to the time series data of river water quality have strong periodicity, seasonality and nonlinearity, which seriously affects the acc...
Autores principales: | Hu, Yankun, Lyu, Li, Wang, Ning, Zhou, Xiaolei, Fang, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338427/ https://www.ncbi.nlm.nih.gov/pubmed/37438608 http://dx.doi.org/10.1038/s41598-023-38465-3 |
Ejemplares similares
-
Deep Temporal Convolution Network for Time Series Classification
por: Koh, Bee Hock David, et al.
Publicado: (2021) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022) -
Fluctuations of water quality time series in rivers follow superstatistics
por: Schäfer, Benjamin, et al.
Publicado: (2021) -
Hybrid Cooperative Cache Based on Temporal Convolutional Networks in Vehicular Edge Network
por: Wu, Honghai, et al.
Publicado: (2023) -
Time-series analysis with smoothed Convolutional Neural Network
por: Wibawa, Aji Prasetya, et al.
Publicado: (2022)