Cargando…
Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan
This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented...
Autores principales: | Berganzo-Besga, Iban, Orengo, Hector A., Lumbreras, Felipe, Alam, Aftab, Campbell, Rosie, Gerrits, Petrus J., de Souza, Jonas Gregorio, Khan, Afifa, Suárez-Moreno, María, Tomaney, Jack, Roberts, Rebecca C., Petrie, Cameron A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338521/ https://www.ncbi.nlm.nih.gov/pubmed/37438385 http://dx.doi.org/10.1038/s41598-023-38190-x |
Ejemplares similares
-
Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data
por: Orengo, Hector A., et al.
Publicado: (2020) -
Potential of deep learning segmentation for the extraction of archaeological features from historical map series
por: Garcia‐Molsosa, Arnau, et al.
Publicado: (2021) -
Mound Builders
Publicado: (1893) -
Text Mining Oral Histories in Historical Archaeology
por: Brown, Madeline, et al.
Publicado: (2023) -
Osteo-archaeology as a medico-historical auxiliary science.
por: Moller-Christensen, V
Publicado: (1973)