Cargando…
Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules
Low-volatile organic compounds (LVOCs) drive key atmospheric processes, such as new particle formation (NPF) and growth. Machine learning tools can accelerate studies of these phenomena, but extensive and versatile LVOC datasets relevant for the atmospheric research community are lacking. We present...
Autores principales: | Besel, Vitus, Todorović, Milica, Kurtén, Theo, Rinke, Patrick, Vehkamäki, Hanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338534/ https://www.ncbi.nlm.nih.gov/pubmed/37438370 http://dx.doi.org/10.1038/s41597-023-02366-x |
Ejemplares similares
-
Atomic structures and orbital energies of 61,489 crystal-forming organic molecules
por: Stuke, Annika, et al.
Publicado: (2020) -
Computational Tools
for Handling Molecular Clusters:
Configurational Sampling, Storage, Analysis, and Machine Learning
por: Kubečka, Jakub, et al.
Publicado: (2023) -
AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics
por: Wang, Tong, et al.
Publicado: (2023) -
ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules
por: Smith, Justin S., et al.
Publicado: (2017) -
Simulated carbon K edge spectral database of organic molecules
por: Shibata, Kiyou, et al.
Publicado: (2022)