Cargando…
Development and validation of asthma risk prediction models using co-expression gene modules and machine learning methods
Asthma is a heterogeneous respiratory disease characterized by airway inflammation and obstruction. Despite recent advances, the genetic regulation of asthma pathogenesis is still largely unknown. Gene expression profiling techniques are well suited to study complex diseases including asthma. In thi...
Autores principales: | Dessie, Eskezeia Y., Gautam, Yadu, Ding, Lili, Altaye, Mekibib, Beyene, Joseph, Mersha, Tesfaye B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338542/ https://www.ncbi.nlm.nih.gov/pubmed/37438356 http://dx.doi.org/10.1038/s41598-023-35866-2 |
Ejemplares similares
-
African ancestry is associated with cluster-based childhood asthma subphenotypes
por: Ding, Lili, et al.
Publicado: (2018) -
Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm
por: Gautam, Yadu, et al.
Publicado: (2022) -
A Roadmap for Building Data Science Capacity for Health Discovery and Innovation in Africa
por: Beyene, Joseph, et al.
Publicado: (2021) -
Development and validation of an RNA-seq-based transcriptomic risk score for asthma
por: Cao, Xuan, et al.
Publicado: (2022) -
MI-MAAP: marker informativeness for multi-ancestry admixed populations
por: Chen, Siqi, et al.
Publicado: (2020)