Cargando…

Visualizing NBD-lipid Uptake in Mammalian Cells by Confocal Microscopy

Eukaryotic cells use a series of membrane transporters to control the movement of lipids across their plasma membrane. Several tools and techniques have been developed to analyze the activity of these transporters in the plasma membrane of mammalian cells. Among them, assays based on fluorescence mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Baum, Julia F., Bredegaard, Lasse, Herrera, Sara Abad, Pomorski, Thomas Günther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bio-Protocol 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338633/
https://www.ncbi.nlm.nih.gov/pubmed/37456343
http://dx.doi.org/10.21769/BioProtoc.4771
Descripción
Sumario:Eukaryotic cells use a series of membrane transporters to control the movement of lipids across their plasma membrane. Several tools and techniques have been developed to analyze the activity of these transporters in the plasma membrane of mammalian cells. Among them, assays based on fluorescence microscopy in combination with fluorescent lipid probes are particularly suitable, allowing visualization of lipid internalization in living cells. Here, we provide a step-by-step protocol for mammalian cell culture, lipid probe preparation, cell labeling, and confocal imaging to monitor lipid internalization by lipid flippases at the plasma membrane based on lipid probes carrying a fluorophore at a short-chain fatty acid. The protocol allows studying a wide range of mammalian cell lines, to test the impact of gene knockouts on lipid internalization at the plasma membrane and changes in lipid uptake during cell differentiation. Key features Visualization and quantification of lipid internalization by lipid flippases at the plasma membrane based on confocal microscopy. Assay is performed on living adherent mammalian cells in culture. The protocol can be easily modified to a wide variety of mammalian cell lines.