Cargando…
Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data
PURPOSE: To develop a model for predicting response to total neoadjuvant treatment (TNT) for patients with locally advanced rectal cancer (LARC) based on baseline magnetic resonance imaging (MRI) and clinical data using artificial intelligence methods. METHODS: Baseline MRI and clinical data were cu...
Autores principales: | Ouyang, Ganlu, Chen, Zhebin, Dou, Meng, Luo, Xu, Wen, Han, Deng, Xiangbing, Meng, Wenjian, Yu, Yongyang, Wu, Bing, Jiang, Dan, Wang, Ziqiang, Yao, Yu, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338728/ https://www.ncbi.nlm.nih.gov/pubmed/37431270 http://dx.doi.org/10.1177/15330338231186467 |
Ejemplares similares
-
Novel Applications of Artificial Intelligence
in Cancer Research
por: Tsuneki, Masayuki, et al.
Publicado: (2023) -
Predicting Response to Total Neoadjuvant Treatment (TNT) in Locally Advanced Rectal Cancer Based on Multiparametric Magnetic Resonance Imaging: A Retrospective Study
por: Ouyang, Ganlu, et al.
Publicado: (2021) -
Application of Artificial Intelligence to Plasma Metabolomics Profiles to Predict Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
por: Irajizad, Ehsan, et al.
Publicado: (2022) -
Human- versus Artificial Intelligence
por: Korteling, J. E. (Hans)., et al.
Publicado: (2021) -
Artificial Intelligence – Advisory or Adversary?
por: Nicolas, Johny, et al.
Publicado: (2023)