Cargando…
Energy spectrum CT index‐based machine learning model predicts the effect of intravenous thrombolysis in lower limbs
To develop a noninvasive machine learning (ML) model based on energy spectrum computed tomography venography (CTV) indices for preoperatively predicting the effect of intravenous thrombolytic treatment in lower limbs. A total of 3492 slices containing thrombus regions from 58 veins in lower limbs in...
Autores principales: | Liu, Rong, Yang, Junlin, Yin, Hongkun, Wu, Qian, Yu, Pengxin, Zhang, Wei, Li, Chenglong, Fan, Guohua, Ju, Shenghong, Cai, Wu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338802/ https://www.ncbi.nlm.nih.gov/pubmed/37254659 http://dx.doi.org/10.1002/acm2.14048 |
Ejemplares similares
-
High‐resolution micro‐CT scanning as an innovative tool for evaluating dental hard tissue development
por: Dong, Guangyan, et al.
Publicado: (2014) -
Characteristics and Outcomes of Intravenous Thrombolysis in Mild Ischemic Stroke Patients
por: Tang, Huan, et al.
Publicado: (2021) -
Lower limit of iron quantification using dual‐energy CT — a phantom study
por: Jiang, Xia, et al.
Publicado: (2020) -
CT slice index and thickness: Impact on organ contouring in radiation treatment planning for prostate cancer
por: Berthelet, E., et al.
Publicado: (2003) -
Deep learning‐based motion correction algorithm for coronary CT angiography: Lowering the phase requirement for morphological and functional evaluation
por: Yao, Xiaoling, et al.
Publicado: (2023)