Cargando…
Geometric and dosimetric evaluation of deep learning based auto‐segmentation for clinical target volume on breast cancer
BACKGROUND: Recently, target auto‐segmentation techniques based on deep learning (DL) have shown promising results. However, inaccurate target delineation will directly affect the treatment planning dose distribution and the effect of subsequent radiotherapy work. Evaluation based on geometric metri...
Autores principales: | Zhong, Yang, Guo, Ying, Fang, Yingtao, Wu, Zhiqiang, Wang, Jiazhou, Hu, Weigang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338811/ https://www.ncbi.nlm.nih.gov/pubmed/36920901 http://dx.doi.org/10.1002/acm2.13951 |
Ejemplares similares
-
A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases
por: Zhong, Yang, et al.
Publicado: (2021) -
The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer
por: Guo, Hongbo, et al.
Publicado: (2021) -
Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
por: Ma, Chen‐Ying, et al.
Publicado: (2021) -
Geometrical and dosimetric evaluation of breast target volume auto-contouring
por: Simões, Rita, et al.
Publicado: (2019) -
Evaluation of deep learning‐based auto‐segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients
por: Wang, Zhi, et al.
Publicado: (2020)