Cargando…
Interoperable and explainable machine learning models to predict morbidity and mortality in acute neurological injury in the pediatric intensive care unit: secondary analysis of the TOPICC study
BACKGROUND: Acute neurological injury is a leading cause of permanent disability and death in the pediatric intensive care unit (PICU). No predictive model has been validated for critically ill children with acute neurological injury. OBJECTIVES: We hypothesized that PICU patients with concern for a...
Autores principales: | Munjal, Neil K., Clark, Robert S. B., Simon, Dennis W., Kochanek, Patrick M., Horvat, Christopher M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338865/ https://www.ncbi.nlm.nih.gov/pubmed/37456559 http://dx.doi.org/10.3389/fped.2023.1177470 |
Ejemplares similares
-
Risk Factors and Neurologic Outcomes Associated With Resuscitation in the Pediatric Intensive Care Unit
por: Lee, En-Pei, et al.
Publicado: (2022) -
Shock Index, Pediatric Age-Adjusted Predicts Morbidity and Mortality in Children Admitted to the Intensive Care Unit
por: Huang, Kuo-Chen, et al.
Publicado: (2021) -
Corrigendum: Shock Index, Pediatric Age-Adjusted Predicts Morbidity and Mortality in Children Admitted to the Intensive Care Unit
por: Huang, Kuo-Chen, et al.
Publicado: (2021) -
Corrigendum: Shock Index, Pediatric Age-Adjusted Predicts Morbidity and Mortality in Children Admitted to the Intensive Care Unit
por: Huang, Kuo-Chen, et al.
Publicado: (2021) -
Amplitude-Integrated EEG for Neurological Assessment and Seizure Detection in a German Pediatric Intensive Care Unit
por: Bruns, Nora, et al.
Publicado: (2019)