Cargando…
Development of prediction model to estimate future risk of ovarian lesions: A multi-center retrospective study
BACKGROUND: To develop the preoperative prediction of ovarian lesions using regression-based statistics analyses and machine learning methods based on multiple serological biomarkers in China. METHODS: 1137 patients with ovarian lesions in Zhujiang Hospital and 518 patients in others hospital in Chi...
Autores principales: | Jing, Bilin, Chen, Gaowen, Yang, Miner, Zhang, Zhi, Zhang, Yue, Zhang, Jingyao, Xie, Juncheng, Hou, Wenjie, Xie, Yong, Huang, Yi, Zhao, Lijie, Yuan, Hua, Liao, Weilin, Wang, Yifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339242/ https://www.ncbi.nlm.nih.gov/pubmed/37455762 http://dx.doi.org/10.1016/j.pmedr.2023.102296 |
Ejemplares similares
-
Tumor Immunometabolism Characterization in Ovarian Cancer With Prognostic and Therapeutic Implications
por: Yang, Miner, et al.
Publicado: (2021) -
Prognostic Role of Neutrophil to Lymphocyte Ratio in Ovarian Cancer: A
Meta-Analysis
por: Chen, Gaowen, et al.
Publicado: (2018) -
PREVAIL: Predicting Recovery through Estimation and Visualization of Active and Incident Lesions
por: Dworkin, Jordan D., et al.
Publicado: (2016) -
Spatial patterns of brain lesions assessed through covariance estimations of lesional voxels in multiple Sclerosis: The SPACE-MS technique
por: Tur, Carmen, et al.
Publicado: (2021) -
Clinical implications of expression of vascular endothelial growth factor in metastatic lesions of ovarian cancers
por: Fujimoto, J, et al.
Publicado: (2001)