Cargando…

DLP-printed GelMA-PMAA scaffold for bone regeneration through endochondral ossification

Intramembranous ossification (IMO) and endochondral ossification (ECO) are two pathways of bone regeneration. The regeneration of most bone, such as limb bone, trunk bone, and skull base bone, mainly occurs in the form of endochondral ossification, which has also become one of the effective ways for...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jianpeng, Wang, Hufei, Li, Ming, Liu, Zhongyang, Cheng, Junyao, Liu, Xiao, Liu, Jianheng, Wang, Xing, Zhang, Licheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Whioce Publishing Pte. Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339440/
https://www.ncbi.nlm.nih.gov/pubmed/37457932
http://dx.doi.org/10.18063/ijb.754
Descripción
Sumario:Intramembranous ossification (IMO) and endochondral ossification (ECO) are two pathways of bone regeneration. The regeneration of most bone, such as limb bone, trunk bone, and skull base bone, mainly occurs in the form of endochondral ossification, which has also become one of the effective ways for bone tissue engineering. In this work, we prepared a well-structured and biocompatible methacrylated gelatin/polymethacrylic acid (GelMA/PMAA) hydrogel by digital light processing (DLP) printing technology, which could effectively chelate iron ions and continuously activate the hypoxia-inducible factor-1 alpha (HIF-1α) signaling pathway to promote the process of endochondral ossification and angiogenesis. The incorporation of PMAA endowed the hydrogel with remarkable viscoelasticity and high efficacy in chelation of iron ions, giving rise to the activation of HIF-1α signaling pathway, improving chondrogenic differentiation in the early stage, and facilitating vascularization in the later stage and bone remodeling. Therefore, the findings have significant implications on DLP printing technology of endochondral osteogenesis induced by the iron-chelating property of biological scaffold, which will provide an effective way in the development of novel bone regeneration.